Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.16.496402

ABSTRACT

Physical interactions between proteins are essential for most biological processes governing life. However, the molecular determinants of such interactions have been challenging to understand, even as genomic, proteomic, and structural data grows. This knowledge gap has been a major obstacle for the comprehensive understanding of cellular protein-protein interaction (PPI) networks and for the de novo design of protein binders that are crucial for synthetic biology and translational applications. We exploit a geometric deep learning framework operating on protein surfaces that generates fingerprints to describe geometric and chemical features critical to drive PPIs. We hypothesized these fingerprints capture the key aspects of molecular recognition that represent a new paradigm in the computational design of novel protein interactions. As a proof-of-principle, we computationally designed four de novo protein binders to engage three protein targets: SARS-CoV-2 spike, PD-1, and PD-L1. The designs bound the target sites with nanomolar affinity upon experimental optimization, structural and mutational characterization showed highly accurate predictions. Overall, our surface-centric approach captures the physical and chemical determinants of molecular recognition, enabling a novel approach for the de novo design of protein interactions and, more broadly, of artificial proteins with function.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.244269

ABSTRACT

Effective and safe vaccines against SARS-CoV-2 are highly desirable to prevent casualties and societal cost caused by Covid-19 pandemic. The receptor binding domain (RBD) of the surface-exposed spike protein of SARS-CoV-2 represents a suitable target for the induction of neutralizing antibodies upon vaccination. Small protein antigens typically induce weak immune response while particles measuring tens of nanometers are efficiently presented to B cell follicles and subsequently to follicular germinal center B cells in draining lymph nodes, where B cell proliferation and affinity maturation occurs. Here we prepared and analyzed the response to several DNA vaccines based on genetic fusions of RBD to four different scaffolding domains, namely to the foldon peptide, ferritin, lumazine synthase and {beta}-annulus peptide, presenting from 6 to 60 copies of the RBD on each particle. Scaffolding strongly augmented the immune response with production of neutralizing antibodies and T cell response including cytotoxic lymphocytes in mice upon immunization with DNA plasmids. The most potent response was observed for the 24-residue {beta}-annulus peptide scaffold that forms large soluble assemblies, that has the advantage of low immunogenicity in comparison to larger scaffolds. Our results support the advancement of this vaccine platform towards clinical trials.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL